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Since the creation of the transistor in 1947, a variety of devices 
have been developed that can provide a communication chan-
nel between humans and the digital world. These devices, 

which include keyboards, mice and touchscreens, communicate 
effectively with a digital system by translating user movements and 
reflecting user intent. This intent originates from the human ner-
vous system and thus an ultimate goal of such communication is to 
bypass these devices and establish a direct communication channel 
between user intent (that is, neural signals) and the digital word. 
Due to advanced silicon electronics, this is now possible using neu-
ral interfaces or brain–machine interfaces.

A neural interface builds a bidirectional communication channel 
between a subject’s nervous system and a man-made device. A typi-
cal interface consists of three key modules (Fig. 1a): a tissue inter-
face, a electronic sensing interface, and a neural signal processing 
unit. Based on technical milestones in the development of the elec-
tronic sensing interface, neural interfaces can be roughly divided 
into four generations (Fig. 1b). The first generation — the patch 
clamp — enabled in  vitro neural signal acquisition, but required 
complex procedures to prepare the biosamples before the neural 
signals could be measured. The second generation — multi-chan-
nel neural interfaces — enabled in vivo experiments, but the types 
of experiments that could be conducted were limited by the cable 
used to connect the in vivo electrodes and the workstation for data 
acquisition, signal processing and control. The third generation 
— implantable/wearable neural interfaces — integrated the neural 
signal acquisition with wireless communication, and enabled long-
term operation in freely moving subjects. Some devices included 
only a wireless transmission unit, whereas more advanced devices 
included signal processing functions, making them self-contained. 
However, the electrodes were still separated from the sensing mod-
ule, causing size overhead and tissue damage. The fourth generation 
— integrated neural interfaces — integrated the electrodes together 
with the electronic sensing interface consisting of low-power ampli-
fiers and filters, and more recently, even the signal processing unit, 
onto the same substrate. This has led to ultracompact structures 
with low-power and high-density electrode capabilities.

In this Review Article, we trace the development of electronic 
neural interfaces through the four generations of technology, 
and consider the challenges and opportunities that arise with the  
latest devices.

The patch clamp technique
Key to the development of electronic neural interfaces is electro-
physiology, which studies the electrical properties of cells and tis-
sues. The exploration of electrophysiology can be traced back to the 
18th century, when Luigi Galvani applied charges to the nerves of 
dead frogs’ muscles using a Leyden jar and observed contractions of 
the muscles1. It was though in the middle of the 20th century that 
crucial capabilities began to emerge.

In 1949, voltage clamp technology was invented2, which allowed 
Alan Hodgkin and Andrew Huxley to record currents carried by 
sodium and potassium ions through nerve cell membranes using 
electrochemical gradients3. The Hodgkin–Huxley model was then 
introduced in 1952 to mathematically describe the membrane 
potentials using a resistor–capacitor (RC) circuit model4 (Fig. 2a). 
Later, in 1976, Erwin Neher and Bert Sakmann developed the patch 
clamp technique to record single ion channel signals (Fig. 2b,c)5. In 
1981, an improved patch clamp technique with a very high resis-
tance was reported6. This technique, which was called gigaseal, 
offered an improved signal-to-noise ratio and allowed very small 
currents to be recorded. After its introduction, patch clamp technol-
ogy became widely adopted, and today, automatic patch clamps are 
available that can record numerous single ion channels simultane-
ously. The patch clamp can thus be considered as the first genera-
tion of neural interfaces.

Multi-channel neural interface devices
The second generation neural interface enabled multi-channel 
in  vivo neural signal acquisition and stimulation. These devices 
alleviated the work of sample preparation in the patch-clamp tech-
nique and allowed direct wired communication to living subjects. 
The neural signals are interfaced through different neural elec-
trodes according to the different types of neural signals of interest. 
A cable is used to connect the electrodes and the signal processing 
workstations. Both signal acquisition from the living subject and 
neural stimulation to the subject are enabled.

Specification of neural signals acquired using different types of 
electrodes. Conventional electrophysiology focused on intracellular 
recording of the peripheral nervous system and was only applicable 
to a single neuron with the electrodes placed inside and outside the 
membrane. Intracellular recording only measures voltages across 
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the cell membrane, but is able to capture sub-threshold deviations 
from resting potentials. For extracellular recordings, the electrodes 
are typically placed in the extracellular fluid and record signal sum-
mations generated by nearby neurons. The extracellular neural sig-
nal features reduced amplitudes as compared to the intracellular 
recording, but it records neural activities over a larger area.

Based on the location of the electrodes, extracellular recordings 
can be classified into either non-invasive or invasive methods. Non-
invasive methods record from the surface of the scalp and are called 
electroencephalography (EEG). Invasive methods use electrodes 
placed inside the body and includes electrocorticography (ECoG), 
where electrodes are placed under the skull on top of the cerebral 
cortex, and local field potential (LFP), where electrodes are usu-
ally placed inside brain tissue7 (though LFP can also be acquired 
using ECoG electrodes8). Using miniaturized electrodes made with 
flexible substrates, micro-electrocorticography (µECoG) arrays 
have also been developed, which offers higher spatial and temporal 
resolution than traditional ECoG. The invasive approach enables a 
more direct interaction with neurons, resulting in higher signal-to-
noise ratios and higher-frequency signal bands, as well as improving 
stimulation effectiveness and accuracy (Fig. 3a).

Different types of electrodes are used depending on the signal 
acquisition method. For non-invasive extracellular recordings, the 
acquisition of EEG signals is challenging due to the weak ampli-

tude of the signal and the difficulties in achieving a good contact 
between the electrode and the scalp, since poor contact can easily 
introduce noise. Traditional EEG wet electrodes are made of met-
als (such as gold, platinum, silver/silver chloride, and tin), and gels 
are mounted in the elastic caps to improve signal quality. Dry elec-
trodes without gels are more convenient and feature a comparable 
performance to the wet electrodes9. However, dry electrodes suffer 
from higher electrode–tissue impedance and a low robustness to 
moving artefacts, and wet electrodes are still regarded as the gold 
standard for lab environments. To address this problem, active elec-
trodes with integrated preamplifiers placed close to the electrodes 
have been developed10. Recently, EEG electrodes using new mate-
rial and design structures have been reported, including polymer 
foam electrodes, flexible metal-coated polymer bristles, injection 
moulded dry electrodes and soft conductive textiles electrodes9. 
Standards for the position of electrode placement have also been 
developed, from an initial 19 electrode positions11, to a more recent 
300 electrode positions12.

Electrodes used for invasive signal acquisition can be divided 
into two categories: penetrating and non-penetrating electrodes. 
Invasive non-penetrating cortical electrodes (Fig. 3b) include epi-
dural ECoG electrodes, which are placed on the dura mater, and 
subdural ECoG electrodes, which are placed on the arachnoid. 
Conventional ECoG electrodes usually feature a pitch of around 1 
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Fig. 1 | The development of neural interfaces. a, In order to directly communicate between the digital world and the nervous system, three key modules 
are required: a tissue interface, which translates biological neural activities from the central nervous system (CNS; with, for example, electrocorticography 
electrodes) or the peripheral nervous system (PNS; with, for example, cuff electrodes) into electrical signals (such as voltage, current or impedance);  
a sensing interface, including a neural signal acquisition module for signal amplification and digitization, and/or a neural stimulation module to elicit the 
activities of a neuron; and a neural signal processing unit. b, Based on technical milestones in the development of the sensing interface, neural interfaces 
can be roughly divided into four generations. The first generation (left) enabled in vitro neural signal acquisition from samples taken from subjects. The 
second generation (middle-left) enabled in vivo neural signal acquisition and stimulation, but a cable was required to get access to the workstation for 
signal processing and control. Standard connectors were applied to link the tissue interface and the sensing interface. The third generation (middle-right) 
offered wireless and lightweight sensing interfaces, but the tissue interface and the sensing device were still separated. The fourth generation (right) 
integrated the tissue interface and the sensing interface on the same substrate, creating a monolithic neural interface.

NaTurE ELEcTroNicS | www.nature.com/natureelectronics

http://www.nature.com/natureelectronics


Review ARticleNaTure elecTroNics

cm (ref. 13). Flexible µECoG electrodes push the spatial resolution 
down to the millimetre or even sub-millimetre range14. Flexible 
substrates also reduce the effective distance between source and 
electrodes through tight, conformal geometries15. Recent transis-
tor multiplexed ECoG arrays have further reduced the area for 
routing wires, as well as increased the electrode density and chan-
nel count16,17.

For penetrating electrodes, microwires made of stainless steel, 
tungsten or platinum/iridium, and insulated with biocompat-
ible materials, are widely used18,19. Bundled arrays of 4 microwires 
known as tetrode yield better mechanical stability and improved 
performance of spike sorting20. Recently a DARPA funded program 
has been announced to develop a neural input–output bus (NIOB) 
to interface with up to one million neurons with tightly bundled 
microwires21. This technique faces challenges in signal attenuation, 
between channel crosstalk and interference. An alternative solution 
that enables multiple site recording is to use silicon-based micro-
electrodes fabricated in the shape of needles22–24 (Fig. 3c). However, 
the rigid probes may cause tissue damage and inflammation, and 
as a result degrade the recording signal. Flexible penetrating elec-
trodes made of polymers are more friendly for chronic implants25 
(Fig. 3d). The flexibility, however, makes the insertion difficult, 
since the electrodes bend and deflect easily. A robotic approach for 
effective polymer electrode insertion has also been introduced26. 
Another approach to reduce the tissue response is to minimize the 
footprint of the electrodes, as achieved with carbon fibre electrodes 
with cross-sections of several micrometres27. High density arrays 
of carbon fibres have also been developed for reliable insertion 
methods28,29 (Fig. 3e).

Initially, microwires were used in work on the peripheral ner-
vous system, but they are were not widely used now due to the dam-
age they can cause to the subject’s nerves. An alternative solution 

is to use thin flexible intra-fascicular electrodes, such as the lon-
gitudinally intra-fascicular electrodes (LIFE)30, and the transverse 
intra-fascicular multi-channel electrodes (TIME)31. Experiments 
show promising future of intra-fascicular electrodes to serve as 
prosthetic solutions32. Sieve electrodes (also known as regenerative 
electrodes)33 with arrays of holes enable the transected nerves to 
regenerate axons. The axons are held by the guiding tube and grow 
through the holes and connect with the distal end. The axons con-
tact the conductive region surrounding the hole, enabling neural 
signal recording and stimulation. The prominent non-penetrating 
peripheral electrodes are the cuff electrodes (Fig. 3f), which are 
widely used in the study of neural pathways. The silicone wraps 
around the nerve with metal electrodes on the interior surface that 
contact the nerve inside34.

Novel electrodes, including those based on organic materials, 
meshes, and multi-functional flexible polymer fibres, are also being 
developed with higher spatial integration, improved long-term sta-
bility and better biocompatibility than conventional electrodes35.

Types of neural stimulation. Electrical stimulation modulates the 
nervous system by applying charges to the neurons. The electrode–
tissue interface can be modelled as a double layer capacitor with 
a resistor in parallel; a voltage source is in series with the resistor 
to model the electrochemical potential36,37 (Fig. 4a). There are three 
different stimulation patterns: unipolar (monopolar) stimulation 
(Fig. 4c), bipolar stimulation (Fig. 4d) and multipolar stimulation 
(Fig. 4e). Although the theory underlying neural stimulation is not 
fully understood, it has been widely used to study the propagation 
mechanisms in neuron networks by recording the response to well 
controlled stimulation patterns (Fig. 4b). It has also been used in 
clinical practice to reduce the symptoms of neurological disorders, 
such as seizures, Parkinson’s disease and pains.
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Fig. 2 | The electrophysiology behind the patch clamp technology. a, Hodgkin–Huxley model describing the membrane potentials using an RC circuits 
model4. The model captures the mathematical description of the action potentials mechanism. Rl and Rn represent the linear and non-linear leaky ion 
channels, respectively. El and En represent the linear and non-linear electrochemical driving voltage, respectively. IP represents the ion pumps. b, Schematic 
illustrating patch clamp recording, including circuits of the technique, of an ion channel (top) and the mechanism of neural propagation (bottom). In a 
patch clamp, a hollow glass tube with a recording electrode (a glass pipette electrode) makes contact with the cell membrane. With a gentle suction, a 
patch of the membrane can be isolated electrically from the external solution, so that a single ion channel can be individually recorded. The neural signal 
propagates along the membrane of the neuron until it reaches the end of the axon. Here, neurotransmitters are released from synaptic vesicles by the 
presynaptic neuron. Receptors on the dendrite of the postsynaptic neuron receive the neurotransmitters, and generate excitatory postsynaptic potentials 
(EPSPs). c, Amplitude waveform of an action potential. When a neuron is in the idle state (resting state), the interior of the membrane has a resting 
potential of around −70 mV compared to the exterior of the membrane. This voltage is maintained by the permeability dominated by the Na+ and K+ 
ion channels135. The postsynaptic neuron will produce an action potential spike if sufficient EPSPs in the dendritic arbor cause the membrane potential to 
exceed a threshold. When the neuron becomes active, the voltage between the interior and exterior membrane changes quickly to a positive value as a 
result of inflow of Na+ ions during the depolarization phase. The voltage drops after reaching the peak of around 30 mV as a result of closing of the Na+ 
channels and a simultaneous outflow of K+ ions during the repolarization phase. The voltage continues to drop and overshoots initial resting potential and 
finally after the refractory phase it returns to the idle state at -70 mV. This sharp change of neural membrane voltage is named the action potential. The 
invoked action potential propagates along the axon and provokes action potential of the neighbouring neurons successively. This mechanism is the basis of 
neuronal communication.
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Based on the application, stimulation can be applied to different 
sites of the nervous system. This can be, for example, transcranial 
electrical stimulation (tES) for pain suppression, which uses elec-
trodes placed on the scalp over the area of interest of the brains38; 
spinal cord stimulation (SCS) for pain suppression and restoration 
of movement in paralyzed patients, which directly stimulates the 
spinal cord39; deep brain stimulation (DBS) for pain suppression, 
seizure suppression, and treatment of Parkinson’s disease and men-
tal depression, which places penetrating electrodes deep inside the 
brain tissue40; vagus nerve stimulation (VNS) for treatment of tinni-
tus, drug-resistant epilepsy and depressions41; transcranial magnetic 
stimulation (TMS) for depression treatment, which generates mag-
netic fields from outside the skull and cause electric currents at the 
targeted brain area42; or stimulations applied to the auditory nerve 
or optic nerve, which are used in cochlear and retinal prostheses to 
restore the hearing and vision, respectively.

Various workstations have been developed that act as the elec-
tronic multichannel interface to different types of electrodes. The 
electrodes (discussed above) are connected through wires to the 
workstations for signal digitization, signal processing and stimu-
lation control. The use of workstations has helped boost advances 
in neuroscience research, and is one of the most common devices 
used in neuroscience labs. However, the bulky size prevents its use 
in various studies, including those on freely moving subjects and 
research that requires long-term, continuous recording. Systems 
with smaller size but comparable functionality are needed.

implantable/wearable neural interface devices
Compact, cable-free devices, which use custom application-specific 
integrated circuits (ASICs) and printed circuit board (PCB) level 
integration, have now been developed and we term these implant-
able/wearable devices the third generation of neural interfaces. 
Wireless communication of control signals and data are imple-
mented using either commercial solutions or customized designs, 

and signal processing is possibly achieved on a separate computer, a 
general-purpose microcontroller, or an ASIC.

There are a number of design considerations in the development 
of compact, implantable/wearable neural interfaces. These include 
safety (implanted electrodes and the stimulation and recording 
electronics must cause minimal damage to the tissue) and reliability 
(for example, signal recording quality consistency, data link/storage 
stability, signal processing accuracy, and physical electrode connec-
tion reliability). There is also flexibility (recording and stimulation 
with programmable amplification gain, bandwidth, channel selec-
tion, sampling rate, and/or stimulation parameters) and portability 
(the size miniaturization of the entire system is important, par-
ticularly for research on freely moving subjects, and this requires 
electronic devices with small areas and compact integration tech-
niques). And low power consumption (with the limitation of the 
system size, a lower power consumption will bring longer battery 
life for long-term experiments, as well minimizing tissue damage 
due to dissipated heat) and fast artefact cancellation (simultane-
ous neural stimulation would cause saturation in neural acquisition 
front-ends).

The use of custom designed systems offers the potential to sig-
nificantly reduce size and power consumption. It optionally con-
sists of a neural acquisition module, a neural stimulation module, 
a feature extraction/signal processing module, and a closed-loop 
control module. Table 1 summarizes state-of-the-art closed-loop 
neural interface systems-on-chip. The neural signal acquisition 
front-ends requires low input-referred noise43,44, sufficient dynamic 
range45,46, high input impedance47, high linearity47,48, high common-
mode rejection ratio (CMRR)49, and high power-supply rejection 
ratio (PSRR)50.

Noise efficiency factor (NEF) is widely accepted as a figure-of-
merit, which is the noise produced by the neural acquisition front-
end amplifier compared to one single bipolar transistor with the same 
bias current, and represents the trade-offs of these requirements  
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Fig. 3 | Typical neural signal characteristics and neural electrodes. a, The amplitude and frequency range of neural signals. The red lines represent the 
common internal 1/f and thermal noise from the electronic circuits itself and external powerline interference that may degrade the quality of neural signal 
recording. The extracellular AP amplitudes are usually lower than that of intracellular AP, and depend on the method for recording and the proximity of the 
neuron to the electrode. Thermal noise has nearly constant power spectral density (PSD) throughout the whole frequency spectrum, and the magnitude 
of the PSD is approximately several μV. The 1/f noise has the PSD reversely proportional to the frequency. The 50/60 Hz powerline interference is another 
major noise source that could easily be coupled into the neural recording front-ends. b, Typical invasive non-penetrating electrodes for ECoG recording. 
Conventional ECoG electrodes usually feature a pitch of around 1 cm (left). Flexible μECoG electrodes have pitches of several millimeters (middle). Recent 
trends in transistor-multiplexed ECoG arrays reduce the area for routing wires, as well as increase the density and channel count (right). c, Invasive 
microelectrodes fabricated in the shape of needles for penetration into the brain tissue, for example, microwire (left), Utah array (middle), and Michigan 
array (right). d, Flexible penetrating high-density polymer electrodes. e, High-density carbon fibre electrode array. f, Cuff electrodes, the non-penetrating 
peripheral electrodes, can wrap around the nerve with metal electrodes on the interior surface. Figure adapted with permission from: b (left), ref. 13, IOP; b 
(middle), ref. 94, Taylor & Francis under CC BY-NC-ND 4.0; b (right), ref. 17, APS; c (left), ref. 19, © PNAS; c (middle), ref. 23, Elsevier; c (right), ref. 24, Wiley; d, 
ref. 25, Elsevier; e, ref. 29, IOP.
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in circuit design51. Other figures-of-merit, such as the power effi-
ciency factor (PEF) and the system efficiency factor (SEF), are also 
used to evaluate the performance of the acquisition front-ends. 
Traditional neural acquisition front-ends employ the AC-coupled 
amplifier to block the large input DC offset and boost the input 
impedance43,44. The DC-coupled amplifier reduces the large area 
of the blocking capacitors but may degrade CMRR52,53. To achieve 
sufficient dynamic range, which is essential in bidirectional neural 
interfaces, recent trends directly convert the analogue signal with-
out the amplifiers, either using the ΔΣ modulators45,46,54–56 or the 
time-based recording front-ends48,57,58.

There are three predominant categories of stimulators. Voltage 
mode stimulators features higher energy efficiency and simpler 
circuits59. However, due to the variability of the impedance of 
the electrode tissue interface, the amount of charge transferred 
to the tissue is hard to control and to balance. Current mode 
stimulators improve the control of charges, but sacrifice energy 
efficiency60,61. Switched-capacitor mode stimulators achieve both 
high efficiency and accurate charge control, but consume large 
area of on-chip capacitors62. Charge accumulation at the electrode 
tissue interface should be avoided for biosafety concerns. Biphasic 
waveform stimulation enables better control of charge-balance. 
However, even with careful design of the symmetry of anodic and 
cathodic stimulation phases, dynamic charge monitoring and bal-
ancing methods60,63 are preferable in state-of-the-art stimulation 
designs60–62.

On-chip neural signal processing and feature extraction. Various 
neural signal processing methodologies have been developed to 
understand neural activity and subject behaviour. Here we highlight 
general purpose neural signal processing methods that have been 
implemented on-chip, as well as the control of a closed-loop neural 
interface. A key aspect of a closed-loop neural interface is the ability 
to process signals and extract discriminative features. Traditional 
MCUs or DSPs can be customized for biomedical applications64–66, 
but the power efficiency is low, compared to custom designed neu-
ral signal processing units.

On-chip signal processing systems optimized for neural inter-
faces can be divided into three categories: neural signal feature 
extraction, data compression prior to data transmission and closed-
loop control-orientated modules.

Neural signal feature extraction, including neural energy in 
specified frequency bands67,68, AP spikes69, frequency-time wavelet 
domain features70, entropy71, and phase synchrony55,56, have been 
widely applied. Some work directly extracts the high level features, 
such as the detection of neurological disorder onset55,68,72, sleep 
staging72–74 and decoding of movement intentions75. Applying neu-
ral signal feature extraction online before data transmission can 
advance the functionality of the system from data acquisition into 
information acquisition. Neural signals with a certain cognitive 
state can be situated in a very narrow frequency band, especially 
in the low frequency range. The commonly used neural signal fre-
quency sub-bands include the delta band in 0.5–3 Hz, theta band in 
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3–8 Hz, alpha band in 8–12 Hz, beta band in 12–38 Hz and gamma 
band in 38–100 Hz. This presents a serious design challenge in the 
energy extraction circuit. Neural energy detectors have been cre-
ated in both analogue76,77 and digital domains56,68. The digital imple-
mentation could easily tune the energy band by changing the filter 
coefficient registers. In the analogue implementation, band tuning 
is more difficult, but with relatively lower power consumption.

On-chip single AP spike detection can be achieved based on 
either time-domain amplitude features or energy-domain fea-
tures. Dual-threshold time-domain methods with fixed or adaptive 
thresholds have been widely used for AP spike detection for its sim-
plicity. Energy-domain methods (that is, non-linear energy opera-
tor (NEO)78) features higher robustness. Some AP detection ASICs 
based on novel algorithms, such as the exponential component-
polynomial component (EC-PC) engines79, have been reported. 
Several key AP features can be extracted during single AP detection, 
including maximum/minimum spike amplitude, spike width, and 
the derivatives of spikes78. Spike sorting is a widely applied online 
processing method. Methods such as principal component analysis 
(PCA)80 and K-means clustering81,82 aim to achieve a good balance 
between algorithm complexity, power consumption, and storage 
requirements.

For online data compression, compressed sensing is widely used 
in implantable/wearable neural interfaces83–85 due to the simplicity 
of the encoding process. Data selection is another way to reduce 
the data transfer throughput. With on-chip signal processing, data 
could be transmitted only when interested neural activity (AP 

spikes, for example) are detected, or only extracted neural features 
are transmitted instead of the raw data70,86,87.

Closed-loop control-oriented modules play an important role 
in real world applications. Stimulations can be triggered by AP 
spikes69, detected specific features68,71 or controlled by PID67,88. The 
implementation of closed-loop control requires integration of both 
the analogue recording front-end and the analogue stimulating back 
end in the same system or even on a single die. The strong stimula-
tion signal easily saturates the amplifier in the recording front-end, 
which is denoted as the stimulation artefact. Reducing the effects of 
the stimulation artefact becomes a key challenge in closed-loop sys-
tem design. Various solutions have been investigated. These include 
blanking technique, which cuts off recording for a short period after 
the stimulator was triggered89; it is simple but leads to undesired 
missing information. Alternatively, the strength of the artefact can 
be reduced in the analogue domain45 with saturation prevention or 
rapid recovery. The effect can also be reduced by performing digital 
signal processing48,90 with signal interpolation or artefact subtrac-
tion. However, none of these methods have provided an adequate 
solution to reduce the impact of the artefacts, and co-design of these 
techniques could be used in the future research91.

Applications of implantable/wearable neural interface. Neural 
stimulation has been proved to be effective in the treatment of many 
neurological disorders. Closed-loop neuromodulation devices are 
available for daily use, such as Medtronic Summit RC+S system92, 
Neuropace RNS system93 and CorTec Brain Interchange system94. 

Table 1 | comparison of state-of-the-art neural interface systems-on-chip

acquisition Stimulation System level

ch 
#

Band 
width

Vrms (µV) Gain 
(dB)

NEF Power 
(µW 
ch–1)

ch 
#

Stim. mode Max. 
current 
(ma)

on-chip 
signal 
processing

Wireless 
datarate 
(kbps)

Power 
(mW)

area Technology

Stanslaski 
201892

4 LFP/ECoG Unknown 48 Unknown 5 8 Current 25.5 FFT, SVM 195 2.5 13.9 cm3  
(die 
stacking)

0.8 μm,  
0.25 μm

Azin 201169 8 0.5–50k 3.12 51.9–
65.6

2.68 26.9 8 Monophasic/
biphasic 
current

0.0945 DSP; time 
amplitude 
window

Unknown 0.375 10.9 mm2 0.35 µm

Rhew 201467 4 0.64–6k 6.3 54 3.76 61.25 8 Biphasic 
current

4.18 Filter;  
energy 
detection;  
PI controller

800 0.468 4 mm2 180 nm

Cheng 201871 16 0.59–117 2.09 50, 60, 
70

3.78 Unknown 16 Biphasic 
current

3 Approximate 
entropy; 
power 
spectral 
density;  
ridge 
regression 
classifier

106 54 25 mm2 180 nm

Kassiri 201755 64 0.01–500 1.13 – 2.86 0.63 64 Arbitrary 
current

1.35 Filter; phase 
synchrony

46000 5.44 5.98 mm2 130 nm

Altaf 201568 16 0.5–100 0.9 52 3.29 1.62 1 Voltage – Band energy; 
D2A LSVM

– Unknown 25 mm2 180 nm

O’Leary 
201856

32 0.1–1k 1.6 – 2.86 1.26 32 Arbitrary 
current

3 Phase-
locking 
value; cross-
frequency 
coupling; 
band energy; 
EDM SVM

– 0.6744 7.59 mm2 130 nm

Pazhouhandeh 
201972

64 0.1–5k 2.1 – 2.98 0.79 64 Arbitrary 
current

Unknown Band energy; 
EDM SVM

Unknown Unknown 11 mm2 130 nm
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The development of wearable neural interface devices benefits from 
the development of the integrated circuits. Various non-invasive 
EEG health monitors are available on the market, such as the IMEC 
EEG headset95. Another trend is the integration of multi-modal 
recording front-ends on the same chip96. Hybrid neural interfaces97, 
which combine different neural signals to reveal additional infor-
mation to improve the performance of the neural interfaces, could 
also benefit from this multi-modal neural signal recording integra-
tion. Various compact neural interfaces used in freely moving ani-
mal subjects for neuroscience research, aiming to better understand 
the causality between the behaviour and the activity of the nervous 
system have also been reported98–101.

Motor intention could be decoded from neural signals recorded 
either invasively102,103 or non-invasively104. Neural interfaces can also 
allow disabled people to control wheelchair movements105 and to 
communicate with others106. Although the neural interface pros-
thetic arms and hands are currently limited to lab use, the minia-
turization of the electronic devices will help put them in clinical 
practice in the near future. Neural stimulation has been used in 
cochlear implants for a long time, and retinal stimulation prosthesis 
could also be used to help improve eyesight107.

Many clinical trials have illustrated the efficacy of neural inter-
faces for neurological disorder rehabilitation such stroke recov-
ery108. Experiments on non-human primates109 and humans110 show 
that it is promising to bypass the wound in the neural pathway and 
rebuild the neural signal communication for paralyzed people with 
spinal cord injuries. With the help of electronic skin111, tactile sens-
ing can be restored by stimulating the peripheral nervous system32 
or the central nervous system112.

To translate implantable/wearable neural interfaces from the lab 
to consumer products, a number of challenges need to be addressed. 
There is, to start, a lack of a deep understanding of how the ner-
vous system works from a medical point of view. Power efficiency 
from a circuits and systems point of view needs to be improved. 
There is an uncertainty in the biosafety of long-term implantations 
from a material and device point of view. The degraded quality of 
recorded signal in the presence of tissue encapsulation remains an 
issue, which can also lead to increased power consumption because 
signals are attenuated by scarring tissue.

integrated neural interfaces
In order to achieve high density neural recording and stimulating 
sites, and reduce the damage caused by the implanted device, inte-
grated neural interfaces are being developed, which combine the 
circuits and the neural probes onto the same base; these devices 
we term the fourth generation of neural interfaces. In comparison, 
third generation neural interfaces involve the PCB integration of the 
probes and IC chips. The size of the device is dominated by the PCB, 
thus limiting further miniaturization.

For fourth generation interfaces, state-of-the-art devices can, 
for example, feature 966 recording sites for active electrodes113 and 
1,600 recording sites for passive electrodes114. From a circuits point 
of view, the main drawback of such work is the relatively large base 
area required to implement a multiplexer or/and the buffer and ana-
logue-to-digital-convertor (ADC) circuits, causing large skull dam-
age compared to the thin and long recording needle. To address this, 
devices that remove the base part by implementing on-site ADC 
and using global analogue lines have been developed, enabling fully 
immersible electrodes for recording with minimal tissue damage115. 
Though the resulting integrated neural interfaces are still rigid and 
not very suitable for chronic implants, the approach could possibly 
take the advantages of substrate transfer technology116, and could, 
in the future, be used to create fully integrated flexible monolithic 
neural interfaces.

Ultra-small implantable free-floating neural interface devices 
with wireless powering and data transmission are also now emerg-

ing. Conventional invasive neural probes can only record or stim-
ulate a small area of the brain, but these millimetre-scale devices 
could be freely distributed, interfacing a larger area of the nervous 
system, which may reveal higher-level mechanisms of brain func-
tionalities. Conventional electrodes integration methods, such 
as bondwire or flip-chip technology54,117, are being reformed by 
on-chip electrodes118 or microwire insertion through through-sili-
con-via (TSV)119. External coil54 could also be replaced by on-chip 
coil118,120. Die dicing and post processing methods have also been 
used to form the electrodes on the side face of the chip, creating an 
ultra-small 0.009 mm3 neural stimulating system120. Since a mag-
netic field is severely attenuated by tissue, relay coil are often placed 
on the surface of the cortex119,121,122. This problem can be solved by 
using ultrasound for powering and data transmission instead of tra-
ditional magnetic fields123–125. While most state-of-the-art devices 
feature one directional single channel interface, systems capable of 
8-channel simultaneous recording have been developed126. The issue 
of management of multiple free-floating neural interfaces, such as 
data isolation and analysis, remains though to be addressed127.

Advances in complementary metal–oxide–semiconductor 
(CMOS) technology are pushing neural interface circuit and sys-
tem design towards monolithic, fully-integrated designs, featuring 
a smaller size, a lower power consumption, a higher acquisition 
density, and real-time online feature extraction/machine learn-
ing, compared to traditional high cost neural interfaces with lim-
ited processing abilities. These interfaces, however, place greater 
demands on circuits and systems designers.

Benefiting from the high integration, the density of contacts are 
being greatly improved with fourth generation neural interfaces. 
The emergence of these fourth generation neural interfaces also 
enables the possibility of implanting more than one device into a 
living body. Wireless communications between the multiple neural 
interface devices could also be used to form an artificial network 
parallel to the brain’s neural network. But new questions arise with 
such developments, including how to deliver massive data commu-
nication (up to several Gbps) between different devices, as well as 
between the devices and living tissues; how to efficiently power up 
the implanted devices; and how to protect the security of the data. In 
order to reduce the power consumption, on-chip signal processing 
could be integrated to reduce the workload of the transceiver. Only 
data with certain characteristics, or only extracted neural markers, 
would be transmitted. On chip closed-loop control modules could 
even manage the neural interfaces itself without continuous com-
munication with the external devices.

This will deliver a higher throughput in translating neural activ-
ity into machine language. The increasing throughput of neural 
signal acquisition, as well as the increasing precision in neural 
stimulation control, could enable the establishment of an effective 
artificial neural sensing capability. This brings an ethical dilemma 
to the design: how much intelligence or decision-making authority 
should be granted to the device, and what is a best trade-off between 
efficiency and safety.

We have focused here on electronic neural interfaces, but there 
are other ways to impact neural activity. Ultrasound can be steered 
non-invasively and stimulate the nervous system at a millime-
tre scale128, though no electronically integrated devices have been 
reported to date. Light can be used instead of electronic charges for 
neural stimulation122,129. The control of single ion channels using 
optogenetics was first introduced in 2005130,131. Light activated pro-
teins are expressed in targeted neurons and response to light with 
different wavelengths, enabling a selection of stimulation targets. 
This, however, requires complicated chemical and biological pre-
processing of the cells, which is not always suitable for human 
subjects. Nevertheless, recent research highlights the possibility 
of implementing wireless optogenetics-based neural stimulation 
without waveguides132. A combination of needle-shaped electronic 
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neural interfaces and fibre-based optical neural interfaces could 
lead to a new generation of brain–machine interfaces133,134.
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